skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cruz, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 16, 2026
  2. We constructed the magnetic field-temperature phase diagrams of new quasi-two-dimensional isosceles triangular lattice antiferromagnets (TLAF) Ca 3 MNb 2 O 9 (M=Co, Ni) from dc and ac magnetic susceptibilities, specific heat, dielectric constant, and electric polarization measurements on single crystalline samples. Ca 3 CoNb 2 O 9 with effective spin-1/2 Co 2+ ions undergoes a two-step antiferromagnetic phase transition at T N1 = 1.3 K and T N2 = 1.5 K and enters a stripe ordered state at zero magnetic field. With increasing field, successive magnetic phase transitions, reminiscent of the up-up-down ( uud ) and the oblique phases, are observed. The dielectric constant of Ca 3 CoNb 2 O 9 shows anomalies related to the magnetic phase transitions, but clear evidence of ferroelectricity is absent. Meanwhile, Ca 3 NiNb 2 O 9 with spin-1 Ni 2+ ions also shows a two-step antiferromagnetic transition at T N1 = 3.8 K and T N2 = 4.2 K at zero field. For Ca 3 NiNb 2 O 9 , the electric polarization in the magnetic ordered phases was clearly observed from the pyroelectric current measurements, which indicates its coexistence of magnetic ordering and ferroelectricity. 
    more » « less
  3. null (Ed.)